Poznanie, zrozumienie oraz uzyskanie kontroli nad procesami samo-organizacji w wieloskładnikowych nanometrowych warstwach makromolekuł, zarówno syntetycznych jak i biologicznych, daje nadzieję na uzyskanie tanich metod tworzenia odnawialnych źródeł energii (polimerowe ogniwa słoneczne) i urządzeń elektronicznych (plastikowe układy scalone), na miniaturyzację istniejących (polimerowe mikro-macierze białek) jak i rozwój nowych technik szybkiej analizy biochemicznej (np. do wczesnego wykrywania chorób). W przeciwieństwie do metali i krzemu przetwarzanie materiałów polimerowych nie jest energochłonne - a więc może być masowe.

Zaawansowane organiczne strategie tworzenia urządzeń opto-elektroniki i biotechnologii bazują na sukcesywnym osadzaniu różnych molekuł tworzących odmienne elementy funkcjonalne. Wyzwaniem jest technologiczne uproszczenie tych strategii przez wykorzystanie procesów samo-organizacji makromolekuł różnego typu, zachodzącej np. już w trakcie osadzania nanowarstw. Innym zagadnieniem jest uzyskanie przestrzennej kontroli tych procesów przy użyciu miękkiej litografii, w tym drukowanych (mikrokontaktowo) molekuł SAM. Użytecznośd samych nanowarstw makromolekuł dla biotechnologii zależy od innych procesów samo-organizacji, takich jak selektywna adsorpcja makrocząsteczek biologicznych do powierzchni polimerów syntetycznych oraz specyficzne wiązanie się bio-makromolekuł w pary (np. białko-ligand, komplementarne nici DNA).